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Abstract Climate change will likely affect popula-

tion dynamics of numerous plant species by modifying

several aspects of the life cycle. Because plant

regeneration from seeds may be particularly vulner-

able, here we assess the possible effects of climate

change on seed characteristics and present an inte-

grated analysis of seven seed traits (nutrient concen-

trations, samara mass, seed mass, wing length, seed

viability, germination percentage, and seedling bio-

mass) of Acer platanoides and A. pseudoplatanus

seeds collected along a wide latitudinal gradient from

Italy to Norway. Seed traits were analyzed in relation

to the environmental conditions experienced by the

mother trees along the latitudinal gradient. We found

that seed traits of A. platanoides were more influenced

by the climatic conditions than those of A. pseudo-

platanus. Additionally, seed viability, germination

percentage, and seedling biomass of A. platanoides

were strongly related to the seed mass and nutrient

concentration. While A. platanoides seeds were more

influenced by the environmental conditions (generally

negatively affected by rising temperatures), compared

to A. pseudoplatanus, A. platanoides still showed

higher germination percentage and seedling biomass

than A. pseudoplatanus. Thus, further research on

subsequent life-history stages of both species is

needed. The variation in seed quality observed along

the climatic gradient highlights the importance of

studying the possible impact of climate change on seed

production and species demography.
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Introduction

Climate is a key determinant of plant population

dynamics across the globe (Woodward 1987).

Therefore, climate change will likely affect popula-

tion dynamics by modifying several aspects of the

plant life cycle (Farnsworth et al. 1995; Norby et al.

2003; Hedhly et al. 2008; Walck et al. 2011). The

sexual reproductive phase may be particularly

vulnerable to climate change (Adler and HilleRis-

Lambers 2008; Hedhly et al. 2008). Consequently,

population size and structure, competitive interac-

tions, distributional ranges, species richness, and

diversity might be affected (e.g., Lloret and Pen

2004; Svenning and Skov 2006; Adler and HilleR-

isLambers 2008). Due to decreasing fitness of

currently more abundant species such as beech

(Fagus sylvatica L.) and Norway spruce (Picea

abies (L.) H.Karst.), a compositional change is

forecast in temperate forests in favor of currently

secondary species such as Acer sp., Tilia sp., and

Quercus sp. (Lloret and Pen 2004; Kramer et al.

2010; Hanewinkel et al. 2012). In this context,

understanding the effect of climate change on the

regeneration of secondary forest tree species is

especially relevant.

The production of seeds is an important aspect of

plant population dynamics, directly linked with

population persistence and the colonization of new

areas (Hedhly et al. 2008). The impacts of climate

change on seed characteristics such as seed set,

maturation, predation, and germination have been

documented before (e.g., Meunier et al. 2007; Hoven-

den et al. 2008; Walck et al. 2011). However, other

seed characteristics such as morphological, chemical,

and physiological aspects are influenced by tempera-

ture and precipitation (Wulff 1986; Fenner 1992;

Conklin and Sellmer 2009) and will likely be affected

by climate change. While variation in seed traits has

been studied in different species (e.g., De Frenne et al.

2011; Sun et al. 2012), there is less information about

the effects of climatic conditions on closely related

species (e.g., same genus) that can exhibit either,

similar or very different seeds characteristics (see

Leishman and Westoby 1994; Green and Juniper

2004), but this information may be very important to

forecast community changes. Moreover, the effects of

climate change on some aspects related to seeds have

not been well documented (Walck et al. 2011) and a

thorough, integrated analysis is especially lacking.

Seed mass is considered a key trait that plays a

crucial role in interspecific interactions, by affecting

seedling growth, buffering carbon losses (Foster and

Janson 1985; Westoby et al. 1996) and herbivore

damage (Dalling and Harms 1999; Green and Juniper

2004; Espelta et al. 2009), thereby influencing the

competitive hierarchies between different species

(Pérez-Ramos et al. 2010). It is a trait that tends to

decrease toward higher latitudes both among and within

species (Moles and Westoby 2003; De Frenne et al.

2013). The variation in seed size can occur not only

within populations, but also within individual plants,

inflorescences, and fruits (Fenner and Thompson 2005).

The intraspecific variation in seed size seems to be the

result of genetic differences between mother plants as

well as the environmental conditions experienced

during seed production (Wulff 1986; Baskin and Baskin

1998; Castro et al. 2008; Souza et al. 2010). However,

seed mass is not the only aspect of seeds that plays an

important role in the regeneration success of plants;

many other seed characteristics affect dormancy break-

ing and germination (Webb and Wareing 1972) or

modify the seed’s susceptibility to insect and pathogens

attack (Beckman and Muller-Landau 2011).

The seed nutrient concentration is another key trait,

especially relevant for early seedling establishment,

since seed reserves are important for the growth in the
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first stages of seedling development (Westoby et al.

1996; Pérez-Ramos et al. 2010) and may condition the

capacity of seedlings to cope with environmental

stress (Fenner and Thompson 2005; Quero et al. 2007).

It has been suggested that the nutrient concentrations

vary in time and space in relation to the maternal

environmental conditions, such as temperature, water

availability, incident radiation, and the amount and

availability of nutrients (Drenovsky and Richards

2005; De Frenne et al. 2011).

Considering the influence of the environmental

conditions on seed production, studying the variation

in seed characteristics developed under different envi-

ronments is likely to provide with important information

on future impacts of climate change on plant regener-

ation from seeds. There are several approaches to study

the effect of climate change on vegetation including the

use of temporal or environmental gradients (Koch et al.

1995; Lenoir et al. 2008; De Frenne et al. 2010; 2013).

Among the latter, latitudinal gradients, through a space-

for-time substitution (Fukami and Wardle 2005), offer

the possibility to study seed characteristics because they

allow researchers to analyze the effect of environmental

conditions on plant traits that have evolved with the

climate over centuries. Using a wide latitudinal gradient,

it is possible to understand the relative role and

contribution of environmental conditions such as tem-

perature, precipitation and soil fertility (De Frenne et al.

2013) on seed quality and the potential impacts of

climate change on plant regeneration success.

Here, we analyze seed traits of two currently

secondary tree species, Acer platanoides and A.

pseudoplatanus, to understand the effects of climate

change in temperate regions. We specifically address

the following questions: (i) is there variation in seed

traits in species growing under different climatic

conditions along a wide latitudinal gradient in Europe?

(ii) if so, does variation in seed traits influence seed

viability and germination as well as early seedling

growth? (iii) do two congeneric species respond

equally to climatic variation during seed production?

Materials and methods

Study region and populations

In 2011, seeds of Acer platanoides L. and A. pseudo-

platanus L. were collected from nine regions along a

2,200 km long latitudinal gradient from Arezzo, Italy

to Trondheim, Norway (Table 1). The seed collection

included both native (populations within the natural

distribution range of the species) and non-native

populations (outside the natural distribution range of

the species) of the two species (Table 1). In each

region, three forest patches within a landscape area of

40 9 40 km2 were selected. In each forest patch, one

vital, seed-bearing healthy mother tree was used for

seed collection. Seeds were collected using water

permeable nets or picked from the forest floor

immediately after seed dispersal (Table 1).

Environmental characteristics

Temperature and precipitation data for the year 2011

were obtained from nearby weather stations (always

less than 50 km from the sampled trees) made

available through the European Climate Assessment

and Dataset project (Tank et al. 2002) and Centro

Funzionale della Regione Toscana and Archivio

CFS—Ufficio Territoriale per la Biodiversità di

Pratovecchio. Precipitation was expressed in millime-

tres of rain per year, while the temperature experi-

enced by the mother tree between April 1 and

September 30 (average period between flowering

and seed maturation) was given in growing degree

hours (GDH). The GDH were calculated with a base

temperature of 5 �C (following Graae et al. 2012).

After calculation, the GDH were standardized per

location by dividing site-specific values by the overall

mean (Graae et al. 2009). The Pearson correlation

between latitude and GDH was r = -0.72

(p \ 0.0001, n = 9).

We collected 15 mineral soil samples (0–20 cm

depth) randomly located in a 20 m 9 20 m area

around each mother tree. The samples were pooled

per mother tree, oven-dried (40 �C) for 48 h and

passed through a 2 mm sieve. The pH was determined

from a solution of 14 ml soil and 70 ml CaCl2 0.01 M

using a glass electrode. Additionally, 5 g of dry soil

was used for the analysis of calcium (Ca), aluminum

(Al), magnesium (Mg) and potassium (K) with atomic

absorption spectrometry (SpecrAA-220; Varian, Santa

Clara, CA, USA); for this analysis, the sample was

extracted in 100 ml ammonium lactate solution

[9.01 ml lactic acid (88 %) ? 18.75 ml acetic acid

(99 %) ? 7.75 ml NH4-acetate diluted to 1 l] accord-

ing to the modified method of Enger et al. (1960).
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Phosphorus (P) was determined in a spectrophotom-

eter (Cary 50; Varian) according to the malachite-

green method, using malachite-green and molybdate

as color reagent. Finally, the percentages of carbon

(C), nitrogen (N), and sulfur (S) were obtained from

0.250 g of soil with an element analyzer (elementar

Vario Macro Cube, Germany).

Seed traits

From each mother tree, 30 apparently healthy samaras

(seed and wing) were randomly selected for the

determination of morphological variables. Each indi-

vidual samara was scanned and air-dried at room

temperature for approximately 72 h, which was shown

to be sufficient to obtain a stable mass during

preliminary experiments. Each individual samara

was weighed first with and then without the wing

(i.e., seed mass), after which wing mass was deter-

mined as the difference between the two values. The

scanned images were used to calculate the wing length

using Image J software (Rasband 2012).

After the above analysis, the seeds were bisected

through the embryo and submerged in a 0.5 %

Tetrazolium salt solution in distilled water (The

tetrazolium Subcommittee of the Association of

Official Seed Analysts 2000). After coloration

(approximately 24 h), the seeds were analyzed under

a microscope for viability determination. The seeds

were categorized into viable and non-viable based on

results from the Tetrazolium salt test, presence of

necrotic tissue and/or absence of an embryo in the

samaras.

To determine germination percentages, ten seeds

from each mother tree were sown in plastic pots

(25 cm3 vol.) filled with standard potting soil (mean

pH 6, nutrient ratio NPK 15:10:11, organic matter

20 % and water holding capacity 80 %) after the seeds

had been cold stratified at 0–1 and 90–95 % humidity,

(for a variable period, ca. two months until each seed

lot started to germinate. Each seed lot was controlled

every week until approximately 10 % of the seeds

started to germinate, this was consider as an indication

that the stratification was completed and the time

required was recorded; for additional details see Carón

et al. 2014). The pots were placed at the edge of a

deciduous forest composed of Fagus sylvatica, Frax-

inus excelsior, Quercus robur and Acer sp. in

Gontrode, Belgium (50�580N, 3�480E), installed under

plastic roofs (70 cm above pots) to exclude natural

precipitation and allow free air exchange. The soil

moisture was held constant at field capacity by

weighing each pot three times per week and adding

the necessary amount of distilled water until field

capacity (gravimetric soil moisture 65 %). Germina-

tion was recorded three times per week and the total

germination was assessed 36 days after sowing. At the

end of the germination trial, the seedlings (above and

belowground biomass) were carefully removed from

the pots, washed, dried at 60 �C during 24 h and

weighed.

A subsample of 30 seeds (without wing) from each

mother tree was randomly selected, oven-dried at

65 �C for 24 h, and milled, which was then used for

determination of seed concentrations of Ca, Mg, P and

K, 75 mg. First, we decomposed the milled samples

using acid digestion with HNO3 and H2SO4. Then, Ca,

Mg, and K were measured with atomic absorption

spectrometry (SpecrAA-220; Varian, Santa Clara,

CA, USA). Seed concentrations of P, C, and N were

determined using the same methods as described

above for the soil analyses. The concentrations of the

above elements were also used to calculate C:N and

N:P ratios.

Data analysis

Environmental variables

To analyze the effects of soil variables (pH, C, N, P, K,

Ca, Al, and Mg) on the seeds traits, principal

components analyses (PCA) with VARIMAX rotation

were performed, extracting the two first PCA axes in

SPSS (version 21.0 IBM Corp. 2012). In both

A. platanoides and A. pseudoplatanus, the first PCA

axis was mainly correlated with P, K, N, C, and S

(r [ 0.532 in all cases) and will be hereafter referred

to as the soil nutrient axis, accounting for 39.8 and

40.2 % of the variability, respectively. The second

PCA axis was mainly correlated with pH, Mg, Ca, and

Al (all r [ 0.812 in A. platanoides, r [ 0.583 in

A. pseudoplatanus) and explained 34.2 and 29.8 % of

the variability of soil variables, respectively. This axis

will hereafter be referred to as soil pH axis.

Mixed-effect models using the lme and lmer

functions in R version 3.0.0 (R Core Team 2013)

were used to analyze the effects of environmental

conditions on some seed traits i.e., samara mass, wing
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length, seed mass, and wing mass over seed mass ratio

(Gaussian error structure), as well as seed viability and

germination (binomial error structure). The fixed

effects were the GDH, annual precipitation during

2011, the two soil PCA axes and the mother tree status

(native vs. not native), while region and mother tree

were used as random effects to account for the

hierarchical structure of the data.

The effects of environmental variables on seed

nutrient concentration, stratification time (days) and

seedling biomass for both species were analyzed with

a generalized least squares (gls) model using the gls-

function in the nlme-library in R with GDH, annual

precipitation during 2011, the two soil PCA axes and

the mother tree status (native vs. not native) as

explanatory variables. For all the variables analyzed,

the determination of the optimal random-effect struc-

ture, gls regressions (i.e., without random-effects) and

lmer functions with region and/or mother tree as

random effects, was performed by comparing the

Akaike Information Criterion (AIC) values for each

model and the model with the lowest AIC value was

selected.

To analyze the effects of seed nutrient concentra-

tion on seed viability, stratification time (days),

germination, and seedling biomass, a PCA analysis

with VARIMAX rotation was performed on the seed

nutrient concentrations (P, K, Ca, Mg, Al, N, C)

extracting again the two first axes for both species. For

A. platanoides, the first PCA axis (mainly correlated

with seed K, Ca, N and P, all r [ 0.588) and the

second PCA axis (mainly correlated with Mg and C,

all r [ 0.620) explained 47.7 and 25.9 % of the total

variation of the chemical seed variables, respectively.

In A. pseudoplatanus, the first PCA axis (mainly

correlated with P, K, Mg and C, all r [ 0.712) and the

second PCA axis (mainly correlated with Ca and N, all

r [ 0.527) explained 40.4 and 20.9 % of the total

variation of the seed properties, respectively.

Seed viability and germination (binomial data)

were analyzed using mixed-effect models with the two

seed nutrient PCA components and the seed mass as

fixed factors and region and mother tree as random

effects. Finally, the stratification time (days) and

seedling biomass were analyzed with a gls model

(lower AIC value than the mixed-effect models) using

the same fixed factors.

In all cases, the model selection (gls vs. mixed-

effects model) was based on the AIC criteria. After-

ward, the full model was fitted (all fixed effects

included) and the model simplification was achieved

by dropping one non-significant explanatory variable

per time and each time a t test was applied (Zuur et al.

2009).

To fulfill normality and homoscedasticity assump-

tions, some variables were transformed. In A. plat-

anoides, seed K, Mg, N, C, Ca concentrations, wing

mass, wing mass:seed mass and stratification time

were log transformed while C:N and C:P ratios were

square root-transformed. In A. pseudoplatanus, Mg, N,

C concentrations, wing mass:seed mass and stratifica-

tion time were log transformed and Ca, C:N, and C:P

ratios square root-transformed.

Results

Seed and samara size characteristics

The seed mass of A. platanoides was negatively

influenced by the accumulated temperature (GDH).

Seeds produced under the warmest conditions were

Table 2 Morphological seed characteristics as a function of the environmental conditions experienced by the mother tree: growing

degree hours (GDH), annual precipitation during 2011, soil nutrient and soil pH axes and mother tree status (Native/Non-native)

Morphological trait Acer platanoides Acer pseudoplatanus

Predictor Par.est t-value Predictor Par.est t-value

Samara mass Soil nutrient axis 8.66E - 3 2.42* Mother tree status 0.04 4.14**

Wing length n.s. Mother tree status 8.39 3.74**

Soil pH axis 2.24 2.66*

Seed mass GDH -0.06 -2.91* Mother tree status 0.02 2.55*

Wing mass-seed mass ratio n.s. Soil pH axis 0.10 2.33*

*** P \ 0.001, ** P \ 0.01, * P \ 0.05
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33 % lighter than those produced under the coldest

condition (Table 2; Fig. 1 and Online Resource1).

Additionally, the soil nutrient axis had a positive effect

on samara mass. In A. pseudoplatanus, wing length

and wing mass:seed mass ratio were positively

affected by the soil pH axis. Samara mass, wing

length, and seed mass were influenced by the mother

tree status; the samaras and seeds produced by non-

native mother trees, transplanted north of the natural

range of this species (locations with lower GDH), were

28 and 23 % heavier than those produced by native

mother trees within the natural range. Additionally,

the wings were 18 % shorter in native trees (Table 2

and Online Resource1). Finally, there was a clear

Fig. 1 Seed traits as a

function of the standardized

growing degree hours (a–d),

and relationship between

seed mass and wing mass

(e–f). Different colors

denote the mother tree status
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increase in wing mass with the increase in seed mass in

A. pseudoplatanus samaras (Fig. 1).

Chemical composition

The seed nutrient concentration in A. platanoides

seeds was more influenced by the environmental

conditions experienced by the mother tree than those

in A. pseudoplatanus seeds (Table 3). In A. platano-

ides seeds, the seed N and K concentrations depended

on GDH and precipitation, respectively. The seed N

concentration was 13 % lower in seeds developed

under the warmest than in the coldest populations

(difference of 4.8 �C between the warmest and coldest

provenances), while the seed K concentration was

34 % lower in seeds developed under the driest than

under the wettest conditions.

Additionally, seed N, K, P, Mg, and Ca concentra-

tions as well as the C:N and C:P ratio in A. platanoides

seeds were affected by the soil characteristics. Seed P

and Mg were positively related to the soil nutrient axis,

while N, P, and K were negatively related to the soil

pH axis. This positive relationship was especially

evident for P due the positive correlation between seed

P and soil P (Online Resource 3), while the seed C:P

ratio exhibited the opposite effect. In A. platanoides,

the seed Ca concentration increased along the pH axis

(positive correlation between soil Ca and seed Ca)

(Table 3 and Online Resource 3).

Conversely, the nutrient concentration in A.

pseudoplatanus seeds was less influenced by the

environmental conditions under which the seeds were

produced than in A. platanoides. Seed C and K

concentrations decreased and increased with precipi-

tation, respectively. The seed K concentration was

14 % lower in seeds produced under the driest

conditions compared to the wettest (Online Resource

2). Finally, the seed C and Ca concentrations were

positively affected by the soil nutrient axis and soil pH

axis, respectively. A clear positive correlation was

observed between seed Ca and soil Ca concentrations

(Table 3 and Online Resource 3).

Table 3 Influence of environmental conditions on seed chem-

ical characteristics of A. platanoides and A. pseudoplatanus:

standardized number of growing degree hours (GDH), annual

precipitation recorded during 2011, soil nutrient axis and soil

pH axis and mother tree status (Native/Non-native) on seed

chemical characteristics

Seed nutrient Acer platanoides Acer pseudoplatanus

Predictor par.est t-value Predictor par.est t-value

C n.s. Precipitation -6.3E - 5 -3.15**

Soil Nutrient axis 8.4E - 3 2.37*

N GDH -0.71 -3.95*** n.s.

Soil pH axis -0.08 -3.92***

Precipitation -3E - 4 -2.48*

P Soil nutrients axis 317.24 2.18* n.s.

Soil pH axis -467.68 -3.21**

Mg Soil nutrient axis 0.07 2.69* n.s.

mother tree status -0.14 -2.73*

K Precipitation 5E - 4 5.14*** Precipitation 10.56 3.56**

Soil pH axis -0.04 -2.53*

Ca Soil pH axis 0.10 3.02** Soil pH axis 3.23 2.91**

CN GDH 1.35 3.86*** n.s.

Precipitation 6.0E - 4 2.37*

Soil pH axis 0.14 3.67**

NP GDH -3.49 -2.34* n.s.

Precipitation -3.1E - 3 -2.91**

CP Soil nutrients axis -0.20 -2.24* n.s.

Soil pH axis 0.29 3.22**

*** P \ 0.001, ** P \ 0.01, * P \ 0.05
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The seed N concentration and the N:P ratio in A.

platanoides were negatively affected by the accumu-

lated temperature (higher values were found at lower

GDH). In contrast, the seed C:N ratio increased with

the accumulated temperature (Fig. 2) due to the

latitudinal variation in nitrogen. The effect of the

environmental conditions on seed chemical composi-

tion for A. pseudoplatanus was less noticeable than

in A. platanoides seeds, as there was, for example, no

correlation between nutrient concentration and

accumulated temperature experienced by the mother

tree during seed production (Online Resource 3).

Stratification, viability, germination, and seedling

growth

For both species, the cold stratification time appeared

to be independent of the environmental conditions

experienced by the mother tree during seed produc-

tion. However, A. platanoides was 30 % faster in

Fig. 2 Seed nitrogen

concentrations (N),

nitrogen:phosphorus (N:P)

and carbon:nitrogen (C:N)

ratios of A. platanoides and

A. pseudoplatanus along the

latitudinal gradient from

Norway to Italy as a function

of the standardized growing

degree hours. Different

colors denote the mother

tree status

Plant Ecol

123



concluding stratification in non-native mother trees.

For this species, seed viability was negatively influ-

enced by the accumulated GDH and the annual

precipitation, while it was positively affected by the

soil nutrient axis. Seed viability recorded under the

warmest conditions was 38 % lower than that recorded

for seeds produced under the coldest conditions, and

an additional reduction of viability was observed with

the increase of precipitation (Table 4 and Online

Resource 4). Germination in A. platanoides increased

along the pH axis, and seedling biomass increased

with increasing precipitation. Seedlings from seeds

produced in the wettest conditions were 46 % bigger

than those produced under the driest conditions (Fig. 3

and Online Resource 4). Consistent with the results of

the analysis of seed mass and size characteristics, in A.

pseudoplatanus, nutrient concentrations, stratification

time, viability, germination and seedling biomass

were not influenced by the climatic conditions

(Table 4 and Fig. 3) The seed viability of both species

was positively influenced by the seed mass, indicating

that the heavier seeds were more viable (Fig. 3). Seed

germination and seedling biomass of A. platanoides

were affected by the seed nutrient concentration as

reflected in the seed PCA1 (K, Ca, N, and P) (Table 4).

Finally, in contrast to A. platanoides, seed germination

and seedling biomass of A. pseudoplatanus did not

depend on chemical composition (Table 4).

Discussion

Seeds of A. platanoides and A. pseudoplatanus

collected along a 2,200 km long latitudinal gradient

from Italy to Norway showed important variation in

chemical, morphological and physiological traits. The

effects of the environmental conditions on seed

characteristics were variable among species, even in

these two related species: A. platanoides was clearly

more influenced by environmental variation than

A. pseudoplatanus.

Seed mass, which represents the amount of

resources available for the first stages of seedling

establishment, was negatively influenced by GDH in

A. platanoides but not in A. pseudoplatanus. However,

due the limited number of sampling points in colder

conditions used in this study, a better representation of

colder conditions in the analysis could strengthen this

relationship. It is clear that A. platanoides seeds

produced under colder conditions are heavier than

Table 4 Effects of the environmental conditions experienced

by the mother tree during seed production (standardized

number of growing degree hours (GDH), annual precipitation

recorded during 2011, soil nutrient axis and soil pH axis,

mother tree status (Native/Non-native) and seed mass and seed

chemical characteristics on seed stratification time, seed

viability, germination, and seedling biomass. The z or t-statis-

tics are presented according to the model used for each variable

analyzed (gls or mixed-effects model)

Morphological trait Acer platanoides Acer pseudoplatanus

Predictor par.est t/z-value Predictor par.est t/z-value

Environmental conditions Environmental conditions

Stratification time Mother tree status -0.34 -2.89** n.s.

Viability GDH -2.40 -2.08*

Precipitation -2.3E - 3 -2.77**

Soil nutrient axis 0.43 3.23**

Germination Soil pH axis -0.41 -2.21* n.s.

Biomass Precipitation 1.2E - 4 2.06* n.s.

Seed traits Seed traits

Stratification time SeedPCA2 0.15 2.33* n.s.

Viability Seed mass 47.75 9.68*** Seed mass 54.54 10.27***

Germination SeedPCA1 0.66 2.81** n.s.

Biomass SeedPCA1 0.03 2.23* n.s.

*** P \ 0.001, ** P \ 0.01, * P \ 0.05
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those produced in warmer environments. The produc-

tion of heavier seeds at lower temperatures is likely

due to slower seed ripening, which allows for the seed

filling process to occur slowly allowing for greater

total assimilation (Fenner and Thompson 2005).

An important seed trait related to the dispersal

capacity of these species is wing mass in relation to

wing length. In A. pseudoplatanus, heavier seeds

generally also had heavier and larger samaras, which

might be related to the need for bigger structures to

allow the wind dispersal of heavier seeds, while in A.

platanoides seeds this relationship was not as clear.

Additionally, in A. pseudoplatanus, the wing length

was positively influenced by the native status of the

mother tree. This relationship indicates that the

populations transplanted north of their natural

Fig. 3 Seed viability, as a

function of the seed mass

and standardized growing

degree hours (a–d) and

seedling biomass as a

function of precipitation

(e, f) in A. platanoides and

A. pseudoplatanus.

Different colors denote the

mother tree status
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distribution range produce bigger wings with a higher

dispersal capacity than the ones growing in their native

range. Consequently, the seeds produced in relocated

populations might have a larger dispersal capacity,

which is considered to be one of the key factors related

to the capacity of a species’ ability to cope with

climate change (Bellard et al. 2012).

The seed size variation in relation to the environ-

mental conditions experienced by the mother tree,

such as temperature, water availability, radiation, and

nutrient availability, has been previously reported

(e.g., Valencia-Dı́az and Montaña 2005; Baraloto and

Forget 2007; Souza et al. 2010). However, the

observed variation in seed nutrient concentrations

due to environmental variation has received much less

attention.

In A. platanoides, the seed nutrient concentration

was affected by a combination of temperature,

precipitation and soil nutrient concentration (De

Frenne et al. 2011; Sun et al. 2012). A clear negative

relationship was found between the GDH experienced

by the mother tree and the seed N concentration and

N:P ratio. This observation is in contrast with the

decrease in leaf N:P ratios with decreasing tempera-

tures reported for 244 herb species (Reich and Oleksyn

2004). Similarly, a decrease in seed N concentrations

and N:P ratios with increasing latitude and decreasing

temperatures was previously reported for the forest

understory herb Anemone nemorosa (De Frenne et al.

2011). Our findings for A. platanoides are supported

by similar observations by Sun et al. (2012) that found

Quercus variabilis acorns show variation in nutrient

composition in relation to climatic and soil conditions

of the mother plants. Additionally, our observed

decrease in N with increasing GDH could be caused

by a possible stimulation of the accumulation of

storage protein in northern locations (Piper and Boote

1999). Furthermore, as observed in both Acer species,

precipitation may affect the concentration of other

nutrients such as seed K and C. In contrast to A.

platanoides, the seed nutrient concentration of A.

pseudoplatanus was clearly less influenced by the

environmental conditions.

Related to seed nutrients concentrations, seed mass

and seed size, a higher seed N concentration has been

shown to increase seed predation and therefore require

additional seed defense traits such as an increased dry

seed mass allocation to the seed coat (Soriano et al.

2011). While we did not measure seed coat thickness

directly, we observed a decrease in the seed N

concentration and seed mass with increasing GDH.

This pattern can potentially induce increases in seed

predation in northern populations where larger seeds

with higher N concentration are produced.

As observed for the other seed traits, the viability

and germination A. platanoides seeds were influenced

by the environmental conditions. This relationship

was not observed in A. pseudoplatanus. The viability

of A. platanoides seeds decreased from colder and

wetter to warmer and dryer provenances. The differ-

ence between the viability and germination percent-

ages (Online Resource 4) highlights the relevance of

both variables to determine potential reproductive

success (Conklin and Sellmer 2009). Additionally, the

difference between viability and germination can be

related to a differential degree of maturity of the seeds

associated, for example, with the temperature experi-

enced by the mother tree (e.g., Graae et al. 2009). This

difference can also be related to the fact that the seeds

may have experienced different dormancy levels and

some may have remained dormant after stratification

(Conklin and Sellmer 2009).

For both Acer species, seed viability was clearly

related to seed mass, indicating that larger seeds show

higher viability. For both species, no relationship was

found between seed mass and germination and

seedling biomass, although it has been suggested that

larger seeds produce bigger seedlings with greater

probability of successful seedling establishment,

higher fitness, access to deeper soil layers, and higher

resistance to drought stress and other environmental

hazards than small seeds (Westoby et al. 1996; Dalling

and Hubbell 2002; Moles and Westoby 2006). Addi-

tionally, since the mother tree can modify the seed

nutrient concentration (e.g., Drenovsky and Richards

2005; De Frenne et al. 2011) and because a clear

relationship was found between seed nutrient concen-

tration and germination and seedling biomass, seed

nutrient concentration might be a more important

factor than the seed mass per se.

Conclusions

The species-specific responses of seed nutrient con-

centrations, seed mass, and size to environmental

variation along a latitudinal-climatic gradient that we

found here stress the complex interactions between

Plant Ecol

123



climate, seed characteristics, and seedling establish-

ment (Arnold et al. 1995; Marrush et al. 1998; Zerche

and Ewald 2005). Our findings are especially relevant

in the context of climate change because they further

our understanding of the effect of climatic conditions

on seed traits. The observed variation in seed quality

along the environmental gradient highlights the pos-

sibility of a significant impact of climate change on

seed characteristics with a consequent impact on the

future demography of these species. Considering that a

compositional change in temperate forests is expected,

the information about species-specific variation on

important seed traits can contribute to the understand-

ing of how plant demography and communities

structure may vary with future climatic changes,

especially considering that novel communities might

emerge in the context of climate change (Williams and

Jackson 2007).

It is likely that under future warmer conditions,

A. platanoides will produce smaller seeds, with lower N

concentration and reduced viability. On the other hand,

the projected dryer conditions for southern Europe may

increase the viability and thereby partly compensate for

the negative effect of warmer conditions. In contrast,

A. pseudoplatanus is not expected to show important

changes in nutrient concentration, seed mass and size

and early establishment as climate changes. Despite the

fact that A. platanoides seeds were more influenced by

the environmental conditions, and were generally

negatively affected by higher temperatures, it is

important to note that A. platanoides had higher

germination percentages and seedling biomass than

A. pseudoplatanus. Thus, further research on subse-

quent life-history stages of both species is needed.
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